Deep learning based regime-switching models of energy commodity prices

نویسندگان

چکیده

Abstract We discuss a deep learning based approach to model the complex dynamics of commodity prices observed in real markets. A regime-switching is proposed describe time evolution market prices. In this model, base regime described by mean-reverting diffusion process and second driven predictions neural network trained on log-returns series. statistical technique, method simulated moments, estimate data. applied methodology energy price series with very different characteristics, namely US wholesale electricity, natural gas crude oil daily The obtained results show good agreement empirical particular, seems reproduce interesting way first four central moments distributions as well shape

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Electricity Prices with Regime Switching Models

We address the issue of modeling spot electricity prices with regime switching models. After reviewing the stylized facts about power markets we propose and fit various models to spot prices from the Nordic power exchange. Afterwards we assess their performance by comparing simulated and market prices. 1 Electricity Spot Prices: Markets and Models The deregulation of the power industry has give...

متن کامل

Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem

This paper investigates whether a regime switching model of stochastic lumber prices is better for the analysis of optimal harvesting problems in forestry than a more traditional single regime model. Prices of lumber derivatives are used to calibrate a regime switching model, with each of two regimes characterized by a different mean reverting process. A single regime, mean reverting process is...

متن کامل

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Learning Deep Energy Models

Deep generative models with multiple hidden layers have been shown to be able to learn meaningful and compact representations of data. In this work we propose deep energy models, which use deep feedforward neural networks to model the energy landscapes that define probabilistic models. We are able to efficiently train all layers of our model simultaneously, allowing the lower layers of the mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy Systems

سال: 2022

ISSN: ['1868-3975', '1868-3967']

DOI: https://doi.org/10.1007/s12667-022-00515-6